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Abstract Computer-aided sports analysis is demanded by

coaches and the media. Image processing and machine

learning techniques that allow for ‘‘live’’ recognition and

tracking of players exist. But these methods are far from

collecting and analyzing event data fully autonomously. To

generate accurate results, human interaction is required at

different stages including system setup, calibration,

supervision of classifier training, and resolution of tracking

conflicts. Furthermore, the real-time constraints are chal-

lenging: in contrast to other object recognition and tracking

applications, we cannot treat data collection, annotation,

and learning as an offline task. A semi-automatic labeling

of training data and robust learning given few examples

from unbalanced classes are required. We present a real-

time system acquiring and analyzing video sequences from

soccer matches. It estimates each player’s position

throughout the whole match in real-time. Performance

measures derived from these raw data allow for an objec-

tive evaluation of physical and tactical profiles of teams

and individuals. The need for precise object recognition,

the restricted working environment, and the technical

limitations of a mobile setup are taken into account. Our

contribution is twofold: (1) the deliberate use of machine

learning and pattern recognition techniques allows us to

achieve high classification accuracy in varying environ-

ments. We systematically evaluate combinations of image

features and learning machines in the given online sce-

nario. Switching between classifiers depending on the

amount of training data and available training time

improves robustness and efficiency. (2) A proper human–

machine interface decreases the number of required oper-

ators who are incorporated into the system’s learning

process. Their main task reduces to the identification of

players in uncertain situations. Our experiments showed

high performance in the classification task achieving an

average error rate of 3 % on three real-world datasets. The

system was proved to collect accurate tracking statistics

throughout different soccer matches in real-time by incor-

porating two human operators only. We finally show how

the resulting data can be used instantly for consumer

applications and discuss further development in the context

of behavior analysis.

Keywords Sports analysis � Supervised learning �Motion

analysis � Human–machine interfaces

1 Introduction

Computer vision and image analysis are becoming more

and more important in sports analytics, the science of

analyzing and modeling processes underlying sporting

events. Sports with high media coverage create a demand

for systematic review and objective evaluation of the per-

formance of individual athletes as well as of teams. Across

almost all sports, management and coaches make use of

statistics and categorized video material to support their

strategies.
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We consider a framework for real-time analysis of

soccer matches [30]. It consists of two high-definition

cameras, one desktop PC, and two laptops. Our system

collects positional data for each player during the whole

match. These data can be accessed for various purposes

such as processing for television broadcasting, mobile

applications, and professional analysis. In particular, pro-

cessed tracking data provide important insights for physical

and tactical performance evaluation by coaches [3] as

depicted in Sect. 5.5. Moreover, in contrast to commercial

systems, the targeted use case is extended to tracking at any

soccer field, be it training pitch, small stadiums or away

matches with a system operated by two briefly trained

laymen. Thus, the development of the presented framework

was driven by the following design goals:

– Mobility One is able to quickly set up and calibrate the

system at any location, be it stadium, training site, or

indoor court.

– Low cost The hardware requirements are small, because

only off-the-shelf hardware is used.

– High degree of automation The recognition system can

be set up and run by only two human operators.

– Accuracy State-of-the-art pattern recognition tech-

niques ensure accurate detection and classification

performance.

In the following, we present our video-based sports

analysis system in detail. We put an emphasis on the

‘‘online’’ training task that has to be solved for a live

application of such a tracking system. This includes the

efficient combination of unsupervised and supervised

multi-category classifications and the involved human–

machine interaction (HMI).

Our approach takes into account the requirements for

robust object recognition and tracking, the constraint

operator working environment, and the technical limita-

tions of a mobile setup. This requires new techniques for

efficient data annotation and iterative classifier training for

the given scenario.

In our sample application, the classification task reduces

to distinguishing different team clothing. There are five

main categories: outfield players and goalkeepers of both

teams and the referees. Being embedded in a real-time

process, the classification module is subject to constraints

regarding the choice of image features and computational

complexity of the classifier. We present a comparative

study that justifies our design choices for the classification

module. We employed combinations of color histograms

from three color spaces as a robust representation of non-

rigid objects and compare their performance with principal

component analysis (PCA) feature extraction and spatio-

grams. Moreover, different types of classifiers, namely a

nearest neighbor approach, linear discriminant analysis,

and two multi-class extensions of support vector machines,

were evaluated.

The following sections present related work and give an

overview of our recognition system. Section 4 points out

the real-time constraints and their implications for feature/

classifier choice, describes the proposed procedure, and

states our empirical results. Section 5 discusses the HMI

approach followed by a brief review of its evaluation. We

finish with an overall conclusion and an outlook towards

future research directions.

2 Related work

Video analysis of sports based on television broadcasts has

been done to categorize the material with respect to the

type of sport, the camera view [37], and interesting events

like scores or offside [1, 8]. Nevertheless, due to the lim-

ited field coverage, TV material is not suitable for robustly

tracking all actors involved in the game.

Approaches to player tracking based on task-specific

camera setups (mainly in the context of soccer) are

reviewed by Xinguo Farin [35] and D’Orazio and Leo 8].

For alternative systems based on multiple cameras dis-

tributed in the stadium we refer to Poppe et al. [24], Ben

Shitrit et al. [4] and Ren et al. [27]. In the case of various

camera positions within the stadium, different lighting

conditions have to be considered, e.g., by a cumulative

brightness transfer function [25]. Other notable publica-

tions relevant in the context of our study focus on detection

and tracking using color and depth information [29],

unsupervised feature extraction [23] and address the

tracking task with graph representations [10]. The impor-

tance of analyzing different color spaces for the image

segmentation in soccer analysis is pointed out by Xu et al.

[36] and Vandenbroucke et al. [33], who introduced an

adapted hybrid color space. As a state-of-the-art baseline,

we considered spatiograms, an extension of histograms,

proposed in the context of region-based object tracking [5].

None of the aforementioned approaches is able to

identify players in person. They only recognize team

membership. It is noteworthy that skilled humans are able

to identify players in the videos, incorporating different

hints like players’ physique, skin and hair color, course of

motions, and position relative to the rest of the team.

First commercial systems for the analysis of soccer

videos have reached the market, for instance Tracab,1

AmiscoPro,2 and Vis.Track.3 They either use up to 16

mobile cameras and a stereo vision approach for tracking

1 http://www.tracab.com.
2 http://www.sport-universal.com.
3 http://www.bundesliga-datenbank.de.
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or require several permanently installed cameras. Statistics

are either captured live—with the help of up to eight

human operators—or offline after 48 h. None of the men-

tioned systems is able to operate fully autonomously.

For the given live scenario, where the visual appearance

of all actors is not known prior to the match, no satisfying

solution has been proposed yet. The standard setup for

classification modules presented in the mentioned literature

is an offline-learning procedure. Commercial systems

counteract this issue by massive human effort, e.g., man-

ually selecting representative colors during warm-up to

initialize segmentation and classification modules. Such

approaches are neither efficient nor robust.

In their review, D’Orazio and Leo conclude that ‘‘a

great deal of work should be directed towards the

enhancement of automatic analysis to reduce manual

intervention and improve their performance’’ [8]. This

study points out the machine learning part to achieve high

classification accuracy in varying environments while

requiring only little human intervention. Still, human

interaction is required for

– system setup and calibration,

– supervision of machine learning algorithms,

– identification of individual players, and

– resolution of multi-object tracking conflicts in crowded

environments.

While there are numerous studies focusing on the

improvement of computer vision techniques involved in

the recognition process, there is little work done in the field

of efficient human–machine interaction. The goal of that

interaction is not limited to complementing weaker system

parts by human operators, but to incorporate the operators

into the process of machine learning for ensuring an

accurate and robust performance.

3 Video processing overview

The recognition system operates in real-time, allows to

analyze full field views, and relies on portable, affordable

hardware. Using two static high-resolution cameras we

produce a panoramic image capturing the whole field. Based

on this video stream we generate two cues for object seg-

mentation, namely adaptive background color estimation

and motion detection. Subsequent clustering extracts regions

of interest. The detections are then classified using color

histogram features, which is detailed in Sect. 4. Finally, we

project recognized player positions onto the ground plane

and follow them over time. Each track is stabilized by a

Kalman filter containing a physical motion model.

In this section, the image processing pipeline illustrated

in Fig. 1 is presented. Mpeg attachment 1 shows a demo

sequence starting with the panorama, visualizing the seg-

mentation cues followed by classified clusters (colored

ROIs) and the temporal integration (paths).

3.1 Full-HD panoramic video capturing

The image acquisition is realized by two stationary full-HD

cameras (Prosilica GE1910C) with a color-CCD resolution

of 1920 9 1080 pixels and a horizontal angle of view of

60�, each covering half of the field. The Gigabit-Ethernet

cameras are directly connected to the processing machine,

which is a four-core Intel Xeon W3520 PC equipped with a

CUDA4 capable graphics card (Geforce GTX 480). For a

computationally efficient and reliable backup parallel to

image processing, the captured video streams are stored in

raw format on a RAID-controlled storage (^100 MB/s).

Basis of all later processing steps is a panoramic image

composed from the two input images (cf. Fig. 2). More-

over, this feed has a higher usability for match reviews and

other media purposes than a split view. For a proper

mapping of image positions into field coordinates, the

cameras and their poses are calibrated in advance. Com-

pensation of radial lens distortion is applied within the

stitching process and allows for a linear mapping (ho-

mography) from image to world coordinates [38]. The

homographies are estimated from at least four-point cor-

respondences per camera. These calibration points are

chosen manually after installation by clicking, for example,

the corner points and the end points of the center line

within the distortion corrected image. The Direct Linear

Transformation algorithm [15, Sect. 4.1] is used to com-

pute the transformations for the two poses H1,2, which

allow us to project image points from both camera coor-

dinate systems (undistorted) to field coordinates.

By choosing an interpolated result pose Hp = a
H1 ? (1 - a) H2 for the panorama, we are able to map

each of its positions xp (pixels) back to a corresponding

source position xi = Hi
-1 Hp xp either in the left, right, or

both images (cf. Fig. 3).

Image data are recorded in Bayer format [2], which is

converted to RGB employing an edge-adaptive, constant-

hue demosaicking approach to avoid color corruption [14,

26]. To obtain color information from each pixel xi we

perform bilinear interpolation of the most proximate source

pixels. For the area where the cameras overlap we inter-

polate between both gradually. As transformation param-

eters are assumed to be constant during a match the

resulting image can be computed using a lookup table and

parallel programming on the graphics card.

4 Compute Unified Device Architecture by Nvidia, see http://www.

nvidia.com/cuda.
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3.2 Real-time object segmentation

Regions of interest (ROIs) are separated from the scene

background performing two steps. We first extract pixel-

wise segmentation cues (see Fig. 2) and then cluster con-

spicuous pixels locally to ROIs.

The color segmentation cue makes use of the plain-

colored surface (i.e., grass-green), which is modeled by a

multivariate normal distribution in HSV space. Therefore,

all pixels covering the field area are taken into account. To

remove outliers covering the background (i.e., players or

line markings) we discard data exceeding a certain Maha-

lanobis distance, which is the distance to the center of the

distribution measured in standard deviations. This is

repeated on the inliers to improve the background distri-

bution estimate. The estimated distribution is used to

generate a lookup table assigning colors to background or

foreground. Although the color estimate can be updated in

regular intervals to deal with lighting changes, it will not

help segmenting foreground into different-colored areas,

Fig. 1 System chart. Colors indicate independent module topics covered in Sect. 3

Fig. 2 Input images, panorama

image, and segmentation cues

(color motion)
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for instance at lines, or in front of the perimeter boards/

stands.

Therefore, a second cue for the detection of short-term

color changes (‘‘motion’’) was considered. The background

color b is modeled in each pixel individually by exponen-

tial smoothing with parameter ab. The background color

evolves over time from the pixel’ color p into btþ1 ¼
abpt þ ð1� abÞbt: Given this background image, fore-

ground pixels are identified by thresholding the current

image subtracted from the background. This background

model allows for motion perception under varying lighting

conditions as the model adapts quickly to a new back-

ground characteristic (cf. [36]). In addition, we introduced

a second parameter af \ ab which is used if the new pixel

value lies within the threshold distance (in color space) and

is, thus, regarded as background. Otherwise af is applied,

so that foreground measurements do not affect the back-

ground estimate much but still allow to adapt towards a

persistent change in background on a longer time scale.

To increase robustness against noise, both cues are

followed by morphological operators (cf. [10]). To this

point, all operations take\10 ms for a HD panorama using

an efficient GPU implementation (cf. Fig. 1, red and green

modules).

The clustering algorithm is a region growing along

‘‘activated’’ cue-pixels, taking into account problem-spe-

cific knowledge (e.g., position of line markings, minimal or

maximal object size).

Limiting the size of clusters to reasonable player

dimensions (with some tolerance) has helped to improve

robustness. Those limits are automatically determined from

the world coordinates xw of the segmented object (i.e., the

player’s foot position), the camera position, a predefined

interval of possible human heights (and widths), and the

perspective transformation Hp. The vertical view angle of

the camera is considered to determine the perspective

shadow point xs behind the player’s head. The height is

estimated as the distance (in image rows) of mapped head

and foot position |(Hp
-1xs - Hp

-1xw)y|. The width is derived

by regarding the object’s expansion D (orthogonal to the

line of sight) within the ground plane. We transform the

extreme points onto the image plane and receive a width

estimate in pixels from jð H�1
p ð xw þ D

2
Þ � H�1

p

ð xw � D
2
ÞÞxj:

Single ROIs may contain several objects overlapping

each other. This matter is addressed by the subsequent

classification module.

3.3 Multi-category classification

The development of the classifier is mainly driven by two

issues—performance and time. As team clothing, back-

ground color and visual appearance vary to a large extent

from match to match, we train the classifier during the

preparation phase or at the beginning of a match. There-

fore, classifiers which can be trained quickly and do not

require too many training examples are necessary.

In addition to the obvious five classes: outfielder 1/2,

goalkeeper 1/2 and referees, we introduce an error cate-

gory for irrelevant objects and a group class which applies

to ROIs containing at least one outfielder from each team

(see below). Preliminary experiments showed that a fully

unsupervised learning approach (e.g., clustering) does not

perform satisfactory. The procedures of feature extraction

and classification for this special ‘‘online’’ learning task are

detailed and evaluated in Sect. 4.

3.4 Multi-object tracking

Once all detected objects of a single frame are classified,

they need to be matched to previously recognized ROIs to

collect path data for each player. Therefore, ROIs’ root

points are transformed to world coordinates and integrated

over time within tracks (see Fig. 4). Each track is repre-

sented by a linear Kalman Filter [11, 36], which in contrast

to that conventional time series filters support an explicit

separation of the system dynamics (physical player model)

and the process of measurement (positive classification at

position z). The state is modeled as player position and

velocity transitioning by laws of motion.

The Kalman process applied to the given task can be

outlined by the following initialization: the matched root

point in world coordinates defines the observation vector

zt ¼ xt yt½ �T at time t. Both are uncertain observations of

the state xt ¼ xt yt x0t y0t½ �T:

Fig. 3 Image planes and their corresponding transformations
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zt ¼ Htxt þ vt; where Ht ¼
1 0 0 0

0 1 0 0

� �
is the

observation model mapping state space to observed space.

Observation noise vt�Nð0;RÞ is modeled as a zero-mean

Gaussian noise with covariance R:

One could incorporate the perspective transformation

into the filter and define the observation noise in image

coordinates. As this cannot be modeled in a linear Kalman

filter, an Extended or Unscented Kalman filter [20] would

be required. To ensure real-time capability, we simply

assumed the noise for measuring the depth to be higher

than for the lateral component: R ¼
1

4
0

0 1

" #
: Given the

internal state at t - 1 the filter dynamics assume the fol-

lowing true state xt to emerge according to xt ¼ Ftxt �
1þ wt; where the state transition model

Ft ¼

1 0 Dt 0

0 1 0 Dt

0 0 1 0

0 0 0 1

2
664

3
775

describes the physical behavior of a player in the ground

plane and process noise wt�Nð0;QÞ: Process noise is

basically introduced by the non-modeled acceleration with

variance ra
2, which translates to

Q ¼
Dt2

2
Dt

" #
Dt2

2
Dt

" #T

r2
a ¼

Dt4

4

Dt3

2
Dt3

2
Dt2

2
64

3
75r2

a

where ra should be chosen in a physically reasonable range

(here: ra ¼ 3 m
s2). The presented filter model is able to

robustly estimate the player’s trajectory and to predict his/

her position in the next time step in real-time.

Consequently, we are left with a constrained matching

problem of new measurements and the Kalman predictions

in each frame. Groups are treated as ‘‘jokers’’ that are able

to serve as an update for more than one track of different

classes. As we do not distinguish between players of the

same team, a human operator needs to assign ‘‘new’’ tracks

to individual players to complete the database. Experi-

ments show sufficient tracking performance for an operator

to easily assign all players of one team in real-time (cf.

Sect. 5.6).

4 Classification

This section focuses on the classification module. We

present image features and classifiers considered in the

following empirical evaluation.

Fig. 4 Tracked paths for each

player visualized in image and

world coordinates
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4.1 Feature extraction

The requirements for valuable image features in the given

scenario are

– low dimensionality,

– fast computability, and

– good class discrimination.

Due to the fact that we detect non-rigid objects, recog-

nition should be invariant to player pose and orientation.

Moreover, team shirts are designed to be distinguished well

by their color. Therefore, we decided not to use shape or

spatial information but color histograms, which proved to

be valid features for object classification [6, 39].

The images are recorded in RGB space but there are

good reasons to evaluate other color spaces. An HSV

representation separates the color properties hue, satura-

tion, and brightness, and enables us to rely less on those

ones the recognition process should be invariant against.

The YUV space has a single brightness channel and defines

the hue in two dimensions without periodicity. Full reso-

lution three-dimensional histograms result in feature vec-

tors of size 2563. Discarding channels and/or reducing their

resolution makes the histograms usable in the given sce-

nario and generally less prone to noise (cf. Fig. 5). Histo-

gram entries are normalized to cope with varying size and

aspect ratio of the detected image regions.

Given the foreground segmentation (see Sect. 3.2) we

are able to identify object relevant pixels in each detected

image region. Thus, only those pixels are considered for

the histogram. Preliminary experiments showed a signifi-

cant increase in performance using this more descriptive

representation.

As a benchmark for feature extraction, we considered

two state-of-the-art methods in the given context. We

regarded image features extracted by PCA applied to uni-

formly scaled RGB training images (see Fig. 6). principal

component analysis is arguably the best-known linear

feature extractor [18]. It was successfully employed for

several recognition tasks based on the Eigenface approach

[32] and lately in the context of sports analysis to distin-

guish between players’ body postures [21].

As a second reference method, spatiograms proposed by

[5] were applied. Spatiograms extend color histograms by

spatial information without the need of preset image

regions. Each histogram bin additionally stores the mean

position and covariance matrix of its associated pixels and,

thus, enables a classifier to learn spatial relationships dur-

ing training.

4.2 Real-time classification

We evaluate different real-time capable classification

algorithms: linear discriminant analysis (LDA), nearest

neighbor (NN), and one-vs-all multi-class support vector

machines (SVMs).

The time spent on training these classifiers as well as the

time they need for classification crucially depend on the

features used and the size of the training set. For our exper-

iments we only considered combinations that are real-time

capable in the given setup. The model selection is realized by

grid search and cross-validation, independently for each

dataset. Runtimes reported in the experimental evaluation

always include the time needed for model selection.

Linear discrimination using LDA gives surprisingly

good results in practice despite its simplicity. Dealing with

underrepresented classes, we apply regularization to ensure

proper conditioning of the covariance matrix in LDA [16,

Sect. 4.3.1].

Nearest neighbor classifiers are of particular interest due

to their fast training. We employ class-wise hierarchical

clustering of training examples to reduce the amount of

prototypes and, thus, guarantee real-time classification [16,

Sect. 13.2.1], [18]. The distance of two training examples is

defined by their Euclidean distance in feature space.

Clustering is performed in an agglomerative complete-

linkage fashion, separately for each class, until the desired

number of prototypes is reached. Finally, the classification

decision for test data is given by the class label of the

nearest cluster (i.e., 1-NN).

(a) (b) (c)

Fig. 5 Visualization of two-

dimensional color histograms

with a resolution of three bits

(i.e. eight bins) in each

dimension (row, column)
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Support vector machines [7] mark the state-of-the-art in

binary classification. They are theoretically well-founded

and usually show excellent classification results in practice.

However, the training time of non-linear SVMs scales

unfavorable with the number of training patterns. There are

multiple extensions of SVMs to multi-category classifica-

tion. In this study, we consider the popular one-versus-all

approach [28, 34]. For fast training of the SVMs, we use the

optimization algorithm proposed by Glasmachers and [17].

4.3 Evaluation

For the evaluation of the classification module the fol-

lowing questions were addressed:

– Which features/classifiers can we use at all in the given

scenario?

– Are the proposed color histograms (see Sect. 4.1)

powerful features for player recognition?

– Is there a common best feature setup (i.e., color space

and histogram resolution) for our application?

– How does the classification performance scale with

collection/training time?

– How long does it take from the beginning of the data

acquisition until we have a reliable classifier?

– Does our solution offer sufficient performance, in

particular, for the underrepresented classes?

4.3.1 Setup

For evaluation, three datasets covering matches from dif-

ferent stadiums and various team clothing were collected

(see Fig. 7). The image data were extracted by the seg-

mentation algorithm detailed in Sect. 3.2 followed by the

considered feature extraction. Data were sampled with a

frequency of 1 Hz. To mimic the live collection and clas-

sification task, training sets only contain images from the

first couple of minutes of each match (including the run-

ning-in period) and the test data are drawn from the rest of

the game. Therefore, they are not independent and identi-

cally distributed (i.i.d.). We do not address this problem

explicitly (this is a direction for future work). Each training

and test dataset contained about 4,000 and 2,000 examples,

respectively.

The SVMs and LDA are based on the implementations

in the Shark5 machine learning library [17]. The SVM

model parameters were selected through grid search from

C 2 f1; 10; 100; . . .; 104g and

c 2 f2; 3; 4; . . .; 25g with kernel

kðx; zÞ ¼ expð�ckx� zk2Þ:

The LDA was regularized by adding

r̂2 2 f10�4; 10�3; . . .; 1g

to the diagonal elements of the empirical covariance

matrix. Regularizing LDA can lead to better generalization

[16] and ensures numerical stability at the same time. The

NN operated on up to 50 clustered prototypes per class. All

parameters were determined by threefold cross-validation

independently for each dataset.

We conducted experiments for all valid pairs of features

and classifiers to identify the best-performing combina-

tions. As mentioned in Sect. 4.1, we compared the pro-

posed features with PCA and spatiograms. We extracted

about 80 principal components, which explain 90 % of the

variance (computed as sum of used eigenvalues by the sum

of all eigenvalues of the data covariance matrix). The

spatiograms were applied as proposed by Birchfield and

Rangarajan [5], which basically results in a YUV histo-

gram with a bit resolution of (2:3:3) extended by mean and

variances.

4.3.2 Results

Looking at the influence of the chosen features, Table 1

documents the overall and individual performance on all

datasets with maximal number of training examples. The

results identify setups that violate time constraints either

for training (\2 min) or for test (\20 ms for 40 examples

5 See http://shark-project.sourceforge.net

Fig. 6 First 30 principal components of dataset I (cf. Fig. 7, top row). Contrast and saturation adjusted for visualization
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per frame). Throughout all experiments, we found superior

performance of the color histograms. Moreover, PCA is

much more expensive as it has a complex training phase,

needs image scaling and has a rather high-dimensional

input space. We assume that the rigid spatial mapping of

PCA features impairs performance in many situations, for

example, in the case of inaccurate segmentations or

strongly varying player poses. Learning poses explicitly

might require more data.

Similar conclusions can be drawn from the spatiogram

experiments. The strong increase in training time is caused

by the feature vector expansion (by a factor of 5). Results

show that even the very flexible spatial information offered

by spatiograms do not improve performance.

We were able to identify a channel resolution for each of

the two color spaces, HSV and YUV, that is superior to the

rest. It is noteworthy that these solutions have a lower

resolution of the brightness channel (V and Y, respec-

tively), supporting robustness towards varying lighting

conditions. Nevertheless, discarding the brightness

decreases performance.

Moreover, the one-versus-all SVM approach outper-

formed alternative methods in terms of accuracy. In aver-

age the SVM yielded a 50 % lower classification error

compared to LDA.

Keeping in mind the need for a classifier that offers

proper results early in the match, we examined the per-

formances of each method after certain periods of time. To

receive a meaningful estimate in the given context, we took

into account the time spent for data collection, annotation,

and training. Figure 8 illustrates this using the example of

dataset I.

The NN was fastest and yielded the best results within

the first minute. In the beginning, the non-i.i.d. issue dis-

cussed above is most severe and presumably 1-NN can

cope better with it than the other classifiers. The best-

performing SVM needed several minutes which is a

drawback in practice. A reasonable trade-off solution was

to employ NN classification at the beginning of each

match—waiting for the SVM to take over. In this case, we

are moreover able to support the data collection phase by

presorting the training examples with the NN class labels.

This reduces manual annotation effort compared to the use

of clustered data and, thus, allows for an earlier SVM

training (cf. Sect. 5).

Figure 9 presents the class-wise precision and recall,

which document the SVM’s high performance even for the

underrepresented classes. In particular, the recall percent-

age was close to 100 % throughout the six relevant classes.

That is, once a relevant player is detected, it is then clas-

sified correctly, which is desirable for the application at

hand. Minor precision for the smaller classes was caused

by misclassification of images from the error-class. We are

able to compensate this using temporal integration within

the subsequent tracking module.

4.3.3 Final evaluation

For a final validation of the documented results, six further

datasets were recorded. To evaluate the stability of the

chosen SVM-based classifier throughout an entire match,

examples were drawn from ten equidistant intervals of

2 min. Thus, each match generated ten sets containing

&5.000 samples each.

Fig. 7 Examples from the three

datasets (one per row). Left to

right: outfielder team 1/2,

goalkeeper 1/2, referees, group,

error
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Figure 10 depicts the mean performance of the two

examined configurations over time. The predominance of

feature configuration HSV 3:3:2 was confirmed (cf. Table

1). A mean classification rate of about 98 % was reached.

The standard deviation of all subsets was 1.8 %, the min-

imum performance 90.5 %. Notably, the validation data

included a team with green shirts, which did neither impair

classification nor segmentation performance.

5 Human–machine interaction

By a considerate choice of features and machine learning

algorithms, our classification module achieves very high

accuracy in object recognition. Still, the multi-object

tracking problem at hand, namely distinguishing between

similar dressed players in crowded scenes, can hardly be

solved fully automatically over the period of a whole match.

The aspired classification performance can only be

achieved by supervised learning methods (see Sect. 4) that

have to be trained to perform well under local conditions

(e.g., lighting and shirt colors). Therefore, we need to

systematically integrate a necessary number of human

operators, the recognition system, and the consumer access

into one efficient technical framework.

In this section, we propose operator integration methods

that feature mobility, high data accuracy, and low person-

nel expense through a powerful interface to the distributed

system sketched in Fig. 11.

5.1 System setup and calibration

Transportation and setup of the hardware can be easily

managed by two operators. Figure 12 shows our setup at

two different sites. As introduced in Sect. 3, the generation

of the panorama video and later tracking requires an image-

to-world mapping which is derived by manual registration

of at least four points in each camera image. At this stage, as

all external parameters are known, the fully automatic cal-

ibration of the background segmentation algorithm follows.

After establishing a local database connection we pre-

pare an entry for the upcoming match to be referenced in

all tracking datasets generated later. With SQL the database

has a well-defined interface and represents the central data

storage, shared within the distributed system.

With the beginning of the match, two remote operators

control the system via laptops. With only little space in the

stadium—especially at the camera stand—a remote archi-

tecture with only two regular seats on the press gallery is a

very feasible setup.

5.2 Human supervision of machine learning

Data collection and annotation are naturally manual pro-

cesses. Nevertheless, we drastically reduce human effort to

make supervised learning techniques applicable in the

given scenario.

Figure 13 illustrates the situation shortly before the

beginning of a soccer match. Teams enter the stadium, line

Table 1 Overall error rate (0/1 loss) for the best-performing classifier of each method, i.e., the one-versus-all SVM and the NN using 50

prototypes per class

Col. res. [bits]: RGB HSV YUV PCA Spatiograms

Dataset Method 2:2:2 3:3:3 6:0:0 3:3:0 4:4:0 2:2:2 3:3:2 3:3:3 4:3:2 0:4:4 2:2:2 2:3:3 3:3:3

I LDA 7.3 6.3 8.9 8.7 9.0 10.2 7.2 6.7 7.3 9.0 10.3 6.5 5.9 9.5 7.6

SVM 4.7 – 5.3 4.0 6.9 6.2 2.9 – – – 5.3 3.3 – 8.3 10.3

NN 4.1 6.5 6.5 6.3 7.3 7.7 5.2 5.1 4.5 4.8 6.0 2.8 6.0 18.2 5.8

II LDA 4.8 3.1 13.2 9.6 9.2 3.8 2.0 2.3 2.3 13.1 11.3 8.8 7.5 13.9 3.4

SVM 1.5 – 6.7 4.2 4.0 1.7 1.8 – – – 3.1 2.7 – 11.7 9.2

NN 3.2 1.3 10.1 6.7 5.9 3.6 2.0 2.1 2.1 6.2 4.4 3.9 3.2 19.5 12.4

III LDA 16.8 10.3 19.9 23.2 18.4 11.4 10.5 9.5 9.3 22.3 23.6 11.6 10.1 9.2 7.2

SVM 6.6 – 8.2 9.1 8.3 4.6 4.2 – – – 5.9 4.6 – 5.1 14.2

NN 13.2 6.5 17.3 16.5 10.4 9.2 7.7 6.8 7.0 24.9 15.7 13.2 9.0 16.9 18.8

Training

time

(s)

LDA 1 81 1 1 11 1 11 79 82 11 1 11 73 273 1.3 9 106

SVM 30 133 39 31 94 26 70 143 146 150 54 66 134 442 1.4 9 106

NN 6 27 6 6 15 6 14 26 27 14 6 14 25 274 1.2 9 104

Classification

per ex.

(ms)

LDA 0.03 2.10 0.03 0.03 0.50 0.03 0.50 2.10 2.10 0.49 0.03 0.49 2.10 0.96 14.51

SVM 0.03 0.19 0.05 0.04 0.14 0.03 0.13 0.24 0.27 0.10 0.04 0.09 0.19 1.81 5.38

NN 0.05 0.38 0.05 0.05 0.20 0.05 0.19 0.38 0.38 0.19 0.05 0.19 0.38 0.92 0.95

The last six rows indicate the computational complexity (runtimes) of feature/classifier combinations for training and classification of a single

image patch
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up, and finally distribute for the kick-off. The whole pro-

cedure normally takes 2 or 3 min. This is generally the first

time that the team shirts are visible (during warm-up usu-

ally different shirts are worn) and, therefore, the first

opportunity to collect valid training examples.

As it is required to gather all statistics from the very

beginning of the match, a first classifier has to finish its

training during this short period. To address this require-

ment and with the knowledge of the preceding sections, we

propose a combination of unsupervised and supervised

learning in an iterative approach.

As soon as the teams enter the stadium, ROIs are col-

lected and a clustering algorithm (i.e., unsupervised

learning), based on the same color histograms used for

classification, is employed. The resulting clusters of similar

images are instantly presented to the human operators (see

Fig. 14) who pick a couple of representative examples for

each of the seven classes if possible (cf. Fig. 7 in Sect. 4.3).

Shortly before the match starts, we create an 1-NN clas-

sifier based on that early data. Thus, tracking and data

collection start off.

This early classifier cannot work perfectly robust for

several reasons. For instance, it is not guaranteed to collect

sufficient examples of groups or misdetections in the first

minutes. The NN classifier will then assign such images to

any of the other classes. Apart from these issues, as stated

earlier in Sect. 4.3, the classification accuracy can gener-

ally be increased using a more sophisticated classifier

incorporating more training examples and more training

time.

Therefore, the collection phase is continued in parallel,

but at this stage enhanced by taking into account the NN

class assignments for automatic pre-sorting. The resulting

clusters are presented to the human operators. Although

they are already engaged in resolving tracking conflicts and

identification of players (see below), they can still approve

the results of unsupervised data collection during game

interruptions.

The SVM training starts as soon as enough examples are

available for each class. This number is empirically chosen

and increases with the number of classes and the dimen-

sionality of the feature vectors. Due to cross-validation for

model and feature selection (cf. Sect. 4), the training itself

is completely automated and does not need human input.

5.3 Identification of individual players

The classifier is able to distinguish different clothes but

does not identify each player in person. The shirt numbers

that could be used for this purpose are not reliably recog-

nizable even using HD cameras. It is noteworthy that

skilled humans are able to identify players in the videos,

incorporating different hints like players’ physique, skin

Fig. 8 Behavior of test error in relation to data collection and

training time from dataset I

Fig. 9 Precision and recall per class for the final SVM (red) and NN

(blue)

Fig. 10 Validation of SVM classification showing the mean perfor-

mance throughout six further matches. Thereby, each test set n ¼
f1; . . .; 9g was classified by an SVM trained on examples from sets

0; . . .; n� 1. Thus, index 0 is a training error
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and hair color, course of motions, and position relative to

the team.

We propose the integration of two operators—one for

each team—to assign player identities and enhance rec-

ognition performance. The operators are supplied with all

recognized player tracks, visually integrated into the live

panorama video feed. As all tracking data are written to the

database in real-time, the operator only needs to add the

players’ personal tag in order to complete his dataset.

Starting the match, all tracks are still anonymous and

Fig. 11 Human–machine interaction overview: operators’ and consumers’ interface

Fig. 12 System setup for live

acquisition in a German soccer

stadium (left) and at an

international field hockey

tournament (right)

Fig. 13 Running-in of the teams. Typical activities during the last 2 or 3 min before the start of a match
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require identification. Tracked players are marked by a

colored bounding box coding their status. Tracks that

require operators’ action are highlighted by signal colors

while identified tracks carry their corresponding shirt

number (see Fig. 15).

The assignment is solved through an intuitive one-click

interface visualized in Fig. 15. The mouse menu shows

shirt numbers, arranged according to the team’s tactical

formation. With the given interface, the operator is able to

assign identities to all players of his team and keep track of

them while following the match. As tracks typically last

several minutes, this does not cause too much workload.

Rarely it may occur that operators are not able to

identify all tracks in real-time. In this case, open tasks are

queued for later treatment (e.g., during oncoming inter-

ruptions). This task list is integrated in the operators’ main

GUI allowing short video replays for each task (see

Fig. 16). For superior visibility of the field and individual

players, the operator’s view is flexible supporting zooming

and scrolling within the full panorama.

5.4 Solving recognition conflicts

Although the classification of single images works robustly

with the presented approach, multi-target tracking does not

perform sufficiently reliable in every situation. All team

sports comprise scenes in which even the most sophisti-

cated tracking approaches run into problems:

– Players wearing same shirts occlude each other for a

longer time.

– Corners or free-kicks result in crowded areas leading to

multiple occlusions and even incomplete player

segmentation.

– Players leaving and entering the field for treatment or

due to exchange.

– Non-relevant individuals enter the field (e.g., medics,

fans).

Thus, none of the currently published player tracking

systems is able to generate valid statistical data over a

whole match without continuous supervision.

Given our Kalman filter-based multi-object tracking

approach (see Sect. 3.4) confidences for each track are

derived. In particular, we are able to identify uncer-

tain situations where we cannot guarantee valid data. In

this case, the operators’ attention is drawn to the conflict

requiring his approval. One special case of conflicting

tracks arises from two or more players from the same team

approaching and possibly taking over each others’ tracks.

This uncertain situation is indicated by the bounding boxes

mentioned above, allowing for an instant identity swap.

5.5 Consumer access and data visualization

The information stored in the database can be used

instantly for a variety of applications: fans in the stadium

directly access detailed statistics using smartphones, the

media improve live TV coverage with interesting facts, and

finally coaches are offered a valuable tool for detailed

analysis already during the match.

Having those applications in mind, we process the raw

data to provide different flavors of information visualiza-

tion—exceeding conventional quantitative data plots and

tables (see Figs. 17, 18). Tracking data of individual

players, for example, can either be visualized in an artifi-

cial bird’s eye view or integrated into the camera per-

spective (cf. Fig. 4).

Apart from collecting statistics online, a full high-defi-

nition Mpeg video of the panorama view is generated. This

is available immediately after the match for detailed review

together with the collected data.

5.6 Experimental HMI evaluation

During development all modules were regularly tested by

different subjects with background in sports analysis.

Thereby we recorded data and performed live experiments

in seven different stadiums. The system has been exten-

sively evaluated concerning the following aspects:

– Field calibration The calibration for generating the live

panorama video was tested successfully on-site for

different sports fields (soccer, hockey, tennis).

Fig. 14 Operator interface for

the assignment of pre-sorted

object clusters to the trained

classes. The shown cluster is

assigned to one of the classes

indicated by the colored buttons

in the top row. Examples that do

not fit this class are labeled

individually. By confirming the

dialog, the assignments are sent

to the processing machine
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– Segmentation Automatic real-time player segmentation

using an adaptive background model worked robustly.

Experiments were conducted under various external

conditions (i.e., weather, ground texture).

– Accuracy test Human subjects were tracked on prede-

fined paths to evaluate the tracking accuracy against

ground-truth data. The error of the measured distances

did not exceed 3 %.

– User feedback Sports scientists have accompanied the

development of useful data preparation techniques.

Customers’ feedback helped us to refine visualization

methods and validated their relevance for professional

sports analysis.

– Full system test The complete system, including

operators and database, was deployed successfully during

an official match of the highest German soccer league

(Bundesliga) and assessed offline with several recordings.

These experiments were conducted to assess the com-

mercial applicability of the system, however, not with a

strict scientific protocol.

6 Conclusions

Video-based sports analysis is an active field of research.

The resulting live data are valuable, among others, for

Fig. 15 Operators’ mouse

menu for one-click player

assignment

Fig. 16 Conflict review: the operator is presented a video clip of the missed situation and corresponding team assignments—again one click

solves the problem

(a) (b) (c)

Fig. 17 Offered positional data visualization
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professional match analysis, media coverage, and sports

betting. But also fans (at home or onsite in the stadium) are

interested in more detailed statistical information.

This paper proposed a self-contained system for video-

based sports analysis featuring high accuracy, mobility and

low system cost. While recognition systems such as the one

presented here can operate autonomously in many situa-

tions, human operators are still needed to assure high

reliability needed for the applications mentioned above.

The contribution of this study is twofold.

On the one hand, we pointed out the appropriate inte-

gration of human operators into the processing chain.

Regarding the limitations of the given working environment

(i.e., crowded stadium), we designed an efficient system

architecture keeping interactions intuitive and as simple as

possible. The system was successfully tested at official

sports events. Valid results were collected online, providing

positional data live through a slim database interface. The

experiments proved low manpower requirement for the

supervision of our recognition system. We showed that

collection of individual player statistics in real-time is

possible by incorporating two human operators only.

A second focus was put on the classification task. Due to

the live scenario, this module is constrained in terms of

time spent on data collection, training, and classification.

Evaluating color histogram features together with either

nearest neighbor combined with clustering (NN), linear

discriminant analysis, or support vector machines (SVMs)

we were able to achieve an overall misclassification rate of

1.8–4.2 % throughout different datasets, obtaining a close

to 100 % recall for the six relevant classes.

Performance crucially depended on the choice of his-

togram resolution and less on the color space itself. The

proposed histogram features outperformed state-of-the-art

baselines, namely PCA (applied to RGB training images)

and spatiograms, significantly. These findings support our

hypothesis that spatial information is not necessary to solve

the classification task at hand. Moreover, experiments

showed superior performance of the NN approach for early

classification (i.e., considering only examples from the first

few images). After a longer collection phase ([5 min),

SVMs outperformed alternative classifiers.

These findings suggest a two-stage solution, using NN

as an ad-hoc classifier first, which is then replaced after

some minutes by a fully trained SVM operating for the rest

of the match. Further evaluation of the SVM-based clas-

sifier was carried out on a validation dataset taken from six

matches. With a mean classification rate of 98 %, the high

performance was confirmed.

To improve classification performance, it is intended to

apply domain adaptation techniques to account for the

difference in class distribution between training and test

data (also known as class imbalance problem, see [19]).

For SVMs in binary classification, a suitable approach was

already proposed [22] and could be transferred to the multi-

class problem. Moreover, we think it is worthwhile to look

into new developments in semi-supervised learning for

reducing labeling cost (e.g., group induction as proposed

by [31]). We will speed up the training times of the

employed classifiers even further by also utilizing the GPU

(e.g., see [12] for an overview of efficient nearest neighbor

classification on GPUs) and more efficient training and

model selection algorithms available in the forthcoming

Shark release [17].

A further research direction of our project is the

analysis of the extracted statistical data by means of data

mining to identify behavioral and tactical patterns of

teams. Therefore, not only spatial but also temporal

features need to be captured on different time scales.

This will support the acquisition of higher level statistical

data, so-called event data (such as an automatic indexing

of corner, free-kick or even one-on-one situations), and

an automatic scene categorization for systematic match

reviews and error analysis. Looping this information

back, the recognition process will profit from a learnt

player distribution for each team to realize a fully auto-

matic identification of players in person. This should be

backed up by recognition of shirt numbers and additional

visual cues.
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Fig. 18 Speed histograms of

two players based on tracking

data from a whole match

J Real-Time Image Proc

123



References

1. Assfalg, J., Bertini, M., Colombo, C., Bimbo, A.D., Nunziati, W.:

Semantic annotation of soccer videos: automatic highlights

identification. Comput. Vis. Image Underst. 92(2–3), 285–305

(2003)

2. Bayer, B.E.: Color imaging array. Eastman Kodak Company. US

Patent 3971065, 1975

3. Beetz, M., von Hoyningen-Huene, N., Kirchlechner, B., Gedikli,

S., Siles, F., Durus, M., Lames, M.: ASpoGAMo: automated sports

game analysis models. Int. J. Comput. Sci. Sport 8(1), (2009)

4. Ben, Shitrit, H., Berclaz, J., Fleuret, F., Fua, P.: Tracking multiple

objects under global appearance constraints. In: Proceedings of

the IEEE International Conference on Computer Vision (ICCV),

pp. 137–144, (2011)

5. Birchfield, S.T., Rangarajan, S.: Spatiograms versus histograms

for region-based tracking. In: Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recogni-

tion, pp. 1158–1163, (2005)

6. Chapelle, O., Haffner, P., Vapnik, V.: Support vector machines

for histogram-based image classification. IEEE Trans. Neural

Netw. 10(5), 1055–1064 (1999)

7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. learn.

20(3), 273–297 (1995)

8. D’Orazio, T., Leo, M.: A review of vision-based systems for

soccer video analysis. Pattern Recognit. 43, 2911–2926 (2010)

9. D’Orazio, T., Leo, M., Spagnolo, P., Mazzeo, P.L., Mosca, N.,

Nitti, M., Distante, A.: An investigation into the feasibility of

real-time soccer offside detection from a multiple camera system.

IEEE Trans. Cir. Sys. Video Technol. 19(12), 1804–1818 (2009)

10. Figueroa, P., Leite, N., Barros, R., Cohen, I., Medioni, G.:

Tracking soccer players using the graph representation. In: Pro-

ceedings of the International Conference on Pattern Recognition

vol. 4, pp. 787–790, (2004)

11. Gelb, A.: Applied Optimal Estimation, 1st edn. MIT Press (1974)

12. Gieseke, F., Heinermann, J., Oancea, C., Igel, C.: Buffer k-d

trees: processing massive nearest neighbor queries on GPUs. In:

Proceedings of the International Conference on Machine Learn-

ing (2014)

13. Glasmachers, T., Igel, C.: Maximum-gain working set selection

for support vector machines. J. Mach. Learn. Res. 7, 1437–1466

(2006)

14. Gunturk, B.K., Glotzbach, J., Altunbasak, Y., Schafer, R.W.,

Mersereau, R.M.: Demosaicking: color filter array interpolation.

IEEE Signal Process. Mag. 22(1), 44–54 (2005)

15. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Com-

puter Vision, 2nd edn. Cambridge University Press (2004)

16. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statis-

tical Learning: Data Mining, Inference, and Prediction. Springer-

Verlag (2001)

17. Igel, C., Glasmachers, T., Heidrich-Meisner, V.: Shark. J. Mach.

Learn. Res. 9:993–996 (2008)

18. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a

review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)

19. Japkowicz, N., Stephen, S.: The class imbalance problem: a

systematic study. Intell. Data Anal. 6(5), 429–449 (2002)

20. Julier, S.J., Uhlmann, J.K.: Unscented filtering and nonlinear

estimation. In: Proceedings of the IEEE, pp. 401–422 (2004)

21. Leo, M., D’Orazio, T., Trivedi, M.: A multi camera system for

soccer player performance evaluation. In: Proceedings of the

ACM International Conference on Distributed Smart Cameras,

pp. 1–8. (2009)

22. Lin, Y., Lee, Y., Wahba, G.: Support vector machines for clas-

sification in nonstandard situations. Mach. Learn. 46(1), 191–202

(2002)

23. Liu, J., Tong, X., Li, W., Wang, T., Zhang, Y., Wang, H.:

Automatic player detection, labeling and tracking in broadcast

soccer video. Pattern Recognit. Lett. 30(2), 103–113 (2009)

24. Poppe, C., Bruyne, S.D., Verstockt, S., de Walle, R.V.: Multi-

camera analysis of soccer sequences. In: Proceedings of the IEEE

Conference on Advanced Video and Signal Based Surveillance,

pp. 26–31, (2010)

25. Prosser, B., Gong, S., Xiang, T.: Multi-camera matching using bi-

directional cumulative brightness transfer functions. In: Pro-

ceedings of the British Machine Vision Conference,

pp. 64.1–64.10, (2008)

26. Ramanath, R., Snyder, W.E., Bilbro, G.L., Sander, W.A.: Dem-

osaicking methods for Bayer color arrays. J. Electron. Imaging

11, 306–315 (2002)

27. Ren, J., Xu, M., Orwell, J., Jones, G.A.: Multi-camera video

surveillance for real-time analysis and reconstruction of soccer

games. Mach. Vision Appl. 21, 855–863 (2010)

28. Rifkin, R., Klautau, A. In defense of one-vs-all classification.

J. Mach. Learn. Res. 5,101–141 (2004)
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